This client provides an interface to interact with the Relevance API. It includes functions to run various steps, insert and retrieve data, and upload temporary files.

Functions

Insert data

Python
insert_data(dataset_id: str, data: List[Dict[str, Any]])

Inserts data into a Relevance dataset.

Arguments

  • dataset_id: The ID of the dataset to insert into.
  • data: A list of dictionaries containing the data to insert.

Returns

  • The response from the API as a JSON object.

Retrieve data

Python
retrieve_data(dataset_id: str, page_size: int = None, include_fields: List[str] = None)

Retrieves data from a Relevance dataset.

Arguments

  • dataset_id: The ID of the dataset to retrieve from.
  • page_size: The number of results to return per page (optional).
  • include_fields: A list of fields to include in the response (optional).

Returns

  • The response from the API as a JSON object.

Retrieve All Data

Python
retrieve_all(dataset_id: str, page_size: int = 1000, include_fields: List[str] = None) -> List[Dict[str, Any]]:

Retrieves all data from a Relevance dataset, paginated to handle large datasets.

Arguments

  • dataset_id: The ID of the dataset to retrieve from.
  • page_size: The number of results to return per page. Defaults to 1000 (optional).
  • include_fields: A list of fields to include in the response. Defaults to None (optional).

Returns

  • A list of dictionaries containing the retrieved data. Each dictionary represents a document from the dataset.

Example

Upload a temporary file

Python
insert_temp_file(file_path_or_bytes: str, ext: str = None)

Uploads a temporary file to Relevance.

Arguments

  • file_path_or_bytes: The path to the file or the file contents as bytes.
  • ext: The file extension (optional).

Returns

  • A dictionary containing the download URL of the uploaded file.

Prompt completion

Python
prompt_completion(prompt: str, model: int = None)

Runs the prompt_completion step with the given prompt and model.

Arguments

  • prompt: The prompt to complete.
  • model: The model to use for completion (optional).

Returns

  • The response from the API as a JSON object.

Run a step

Python
run_step(step_name: str, params: Dict[str, Any])

Runs a Relevance step with the given name and parameters.

Arguments

  • step_name: The name of the step to run.
  • params: A dictionary of parameters to pass to the step.

Returns

  • The response from the API as a JSON object.

Usage Examples

Insert data

Python
data = [{"field1": "value1", "field2": "value2"}, {"field1": "value3", "field2": "value4"}]
response = insert_data("my_dataset", data)

Retrieve data

Python
response = retrieve_data("my_dataset", page_size=10, include_fields=["field1", "field2"])

Retrieve all

Python
response = retrieve_all("my_dataset", page_size=500, include_fields=["field1", "field2"])

Upload a temporary file

Note: Make sure to replace the region variable with your actual region.

Python
file_path = "path/to/file.txt"
response = insert_temp_file(file_path)

Prompt completion

Python
response = prompt_completion("My prompt", model="openai-gpt35")

Run a step

Python
response = run_step("my_step", {"param1": "value1", "param2": "value2"})